不等式性质
不等式性质
- 加减乘除
$$a > b \implies \left\{ \begin{array}{lr} a + c > b + c \\ a \cdot c > b \cdot c \qquad (c > 0) \\ a \cdot c < b \cdot c \qquad (c < 0) \end{array} \right. $$
- 同向可加
$$\left\{ \begin{array}{lr} a > b \\ c > d \end{array} \right. \implies a + c > b + d $$
- 同向同正可乘
$$\left\{ \begin{array}{lr} a > b > 0 \\ c > d > 0 \end{array} \right. \implies a \cdot c > b \cdot d $$
- 正数乘方开方
$$a > b > 0 \implies \left\{ \begin{array}{lr} a ^ n > b ^ n \\ \sqrt[n]{a} > \sqrt[n]{b} \end{array} \right. \qquad (n > 0) $$
例题
选择题解题技巧:
- 不等式性质
- 化简选项
- 代入特殊值
示例1:
$
\begin{aligned}
& \quad\; a^2 + b^2 - (4a - 2b - 5) \\
&= a^2 - 4a + b^2 + 2b + 5 \\
&= a^2 - 4a + 4 + b^2 + 2b + 1 \\
&= (a - 2)^2 + (b + 1)^2 \\
&\geq 0
\end{aligned}
$
所以$a^2 + b^2 \geq 4a - 2b - 5$.
示例2:
$
\begin{aligned}
& \quad\; \dfrac{a}{\sqrt{b}} + \dfrac{b}{\sqrt{a}} - (\sqrt{a} + \sqrt{b}) \\
&= \dfrac{a\sqrt{a} + b\sqrt{b}}{\sqrt{ab}} - (\sqrt{a} + \sqrt{b}) \\
&= \dfrac{(\sqrt{a})^3 + (\sqrt{b})^3}{\sqrt{ab}} - (\sqrt{a} + \sqrt{b}) \\
&= \dfrac{(\sqrt{a} + \sqrt{b})(a + b - \sqrt{ab})}{\sqrt{ab}} - (\sqrt{a} + \sqrt{b}) \\
&= (\sqrt{a} + \sqrt{b})(\dfrac{a + b - \sqrt{ab}}{\sqrt{ab}} - 1) \\
&= (\sqrt{a} + \sqrt{b})(\dfrac{a + b - \sqrt{ab}}{\sqrt{ab}} - \dfrac{\sqrt{ab}}{\sqrt{ab}}) \\
&= (\sqrt{a} + \sqrt{b})(\dfrac{a + b - 2\sqrt{ab}}{\sqrt{ab}}) \\
&= (\sqrt{a} + \sqrt{b})[\dfrac{(\sqrt{a} - \sqrt{b})^2}{\sqrt{ab}}] \\
&\geq 0
\end{aligned}
$
所以$\dfrac{a}{\sqrt{b}} + \dfrac{b}{\sqrt{a}} \geq \sqrt{a} + \sqrt{b}$.
示例3:
左边$^2 = 13 + 2\sqrt{42}$
右边$^2 = 13 + 2\sqrt{40}$
所以左边$>$右边.
示例4:
据题意
$
\left\{
\begin{array}{lr}
2 < 2a < 6 \\
-4 < -b < -2
\end{array}
\right.
\implies -2 < 2a - b < 4
$
示例5(通解):
设$m = 4x - y$,$n = 2x + y$.
解得
$
\left\{
\begin{array}{lr}
x = \dfrac{1}{6}(m + n) \\
y = \dfrac{2}{3}n - \dfrac{1}{3}m
\end{array}
\right.
$
则$5x + y = \dfrac{1}{2}m + \dfrac{3}{2}n$.
所以$5x + y \in [\dfrac{3}{2}, 15]$.
含参二次不等式:
基本不等式
基本不等式
由$(\sqrt{x} - \sqrt{y})^2 \geq 0$得
$$\boldsymbol{x + y \geq 2\sqrt{xy} \qquad (x, y \geq 0)} $$
注意: 当$x + y = 2\sqrt{xy}$时,$x = y$,应验证等号是否成立.
例题
- 和积式
- 非齐次式
- 求$(2x + \dfrac{1}{x - 1})_{min} \qquad (x > 0)$.
$ \begin{aligned} 原式 &= 2x - 2 + \dfrac{1}{x - 1} + 2 \\ &\geq 2\sqrt{(2x - 2) \cdot \dfrac{1}{x - 1}} + 2 \\ &= 2\sqrt{2} + 2 \end{aligned} $
所以$(2x + \dfrac{1}{x - 1})_{min} = 2\sqrt{2} + 2$.
- 齐次式
齐次式: 分子分母每项次数都相同.
设
$ \left\{ \begin{array}{lr} m = a + 2b \\ n = a + b \end{array} \right. $
则
$\begin{aligned} &\quad\; \dfrac{a}{a + 2b} + \dfrac{b}{a + b} \\ &= \dfrac{2n - m}{m} + \dfrac{m - n}{n} \\ &= \dfrac{2n}{m} + \dfrac{m}{n} - 1 - 1 \\ &\geq 2\sqrt{2} - 2 \end{aligned} $
进阶
换元法
凑其次
强行消元
多次使用不等式
元的个数$=$方程个数$=$不等式使用次数.
设$a > b > c > 0$,求$2a^2 + \dfrac{1}{ab} + \dfrac{1}{a(a - b)} - 10ac + 25c^2$的最小值.
$
\begin{aligned}
& \quad\; 2a^2 + \dfrac{1}{ab} + \dfrac{1}{a(a - b)} - 10ac + 25c^2 \\
&= a^2 - 10ac + 25c^2 + a^2 + \dfrac{1}{ab} + \dfrac{1}{a(a - b)} \\
&= (a - 5c)^2 + a^2 + \dfrac{1}{a^2 - ab} + \dfrac{1}{ab} \\
&= (a - 5c)^2 + a^2 - ab + \dfrac{1}{a^2 - ab} + ab + \dfrac{1}{ab} \\
&\geq (a - 5c)^2 + 2\sqrt{1} + 2\sqrt{1} \\
&= (a - 5c)^2 + 4 \\
&\geq 4
\end{aligned}
$